
SECURITY CLASSIFICATION OF THIS PAGE (When 0Daa Znt ~ ~ __________________

REPOR DOCMENTTIONPAGERZJD INSTRUCTIONSREPOT DCUMNTATON AGEBEFORE COMPLETING FORM
I.EAPORT NUMBIR 2. GOVT ACCESSION NO 3. RECIPICNT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. Type OF REPORT a PERIOD COVERED

final technical report
Deductive Prograimming Synthesis 9/16/87-9/16/88

. PERFORMING OnG. REPORT MNGMER

7. AIJTHOR(aj 6. CONTRACT OR GRANT MNMBR()

LnZohar Manna N00039-84-C-021 1 Task 15

S. PERFORMING ORGANIZATION NAME ANC ACORES$ 10. PROGRAM ELEMENT. PROJECT. TASK
(.0 Computer Scinece Department AREA & WORK UNIT NUMBERSo Stanford University
c~hI Stanford, CA 94305

' I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
SPAWAR 324 1C2 March 1989
Space and Naval Warfare Systems Command IL. NUMBER Of PAGES
Washington, D.C. 20363-5 100 6

S I'L MONITORING AGENCY NAME & AOORESS(U ie.tIt dfoealNM COVIGI~d Of0169) IS. SECURITY CLASS. (of a~ia "ePon)

ONR Representative - Mr. Paul Biddle
202 McCullough Unclassified
Stanford University IS& k&IJSIICATIOu/ DOWNGRADING
Stanford,_CA__94305________________

IS. DISTRIBUTION STATEMENT (of *I@ Ropeot

Approved for public release: distribution unlimited

17. DISTRIBUTION STATEMENT (of the obstast entered in No*e& Of II1*n Ono~m Atlpere

IS. SUPPSEMENTARY NOTES

DTIC
Is. KEy WORDS (Cetau e ide of 0040..wr ma Identle 6? Noo nw~w SFL a-A TE.#

H
30. ABSTRACT (Ceatdwe uvM an efe d* IN 00006M ad 1410111141 OF 61066mga

DO I FJAMM73 1473 EDITION OF I NovSSi 15 *0j.s
S/N 0@102- LP6 @14- 6601 1CI., CLAUIFICATIOU OF THIS PAGS 9Ef Date&W



DEDUCTIVE PROGRAMMING SYNTHESIS

Final Technical Report:
Department of the Navy

Contract N00039-84-C-0211 (task 15)
Expiration Date: September 16, 1988

by
Zohar Manna, Professor

Computer Science Department
Stanford University

Stanford, California 94305

March 1989



TECHNICAL SUMMARY

Our research concentrated on the following topics:

0 Binary-Search Algorithms ([MWI])

Some of the most efficient numerical algorithms rely on it binary-search strategy; according to
this strategy, the interval in which the desired output is sought is divided roughly in half at each
iteration. This technique is so useful that some authors-(e.g., Dershowitz and Manna, and Smith
-have proposed that a general binary-search paradigm or schema be built into program synthesis

svstenis and then specialized as required for particular applications.

It is certainly valuable to store such schemata if they are of general application and difficult to
discover. This approach, however, leaves open the question of how schemata are discovered in the
first place. We lave found that the concept of binary search appears quite naturally and easily in
the derivations of some numerical programs. The concept arises as the result of a single resolution
step, between a goal and itself, using our deductive-synthesis techniques. I

The programs we have produced in this way (e.g.. real-number quotient and square root,
integer quotient and square root, and array searching) are quite simple and reasonably efficient,
but are bizarre in appearance and different from what we would have constructed by informal
means. For example, we have developed by our synthesis techniques the following real-number
square-root program sqrt(r, 6):

if max(r. 1) <
then 0

sqrt(r, c) else if [sqrt(r, 2E) + ] 2 < r
then .;qrt(r. 2c) + E

else .sqrt(r. 2c).

The program tests if the error tolerance c is sufficiently large; if so, 0 is a close enough approxi-
ination. Otherwise, the program finds recursively an approximation within 2f less than the exact
square root of r. It then tries to refine this estimate, increasing it by E if the exact square root is
large onough and leaving it the same otherwise.

This program was surprising to us in that it doubles a number rather than halving it as the
classical binary-search program does. Nevertheless, if the repeated occurrences of the recursive call
.(qrt(r, 2E) are combined by common-subexpression elimination, this program is as efficient as the
familiar one and somewhat simpler.

0 Logic: The Calculus of Computer Science (MW2I)

The research papers in which we have presented the deductive approach to program synthesis
has been addressed to the usual academic readers of the scholarly journals. In an effort to make this
work accessible to a wider audience, including computer science undergraduates and programmers,
we have developed a more elementary treatment in the form of a two-volume book, The Logical
Basais for Computer Programming, Addison-Wesley.

Ithis book requires no computer programming and no mathematics other than an intuitive
mnderstanding of sets, relations, functions, and numbers: the level of exposition is elementary. Coi
Nevertheless, the text presents some novel research results, including :/or

21



" theories of strings, trees, lists, finite sets and bags, which are particularly weil suited to
theorem-proving and program-synthesis applications;

" formalizations of parsing, infinite sequences, expressions, substitutions, and unification;

" a nonclausal version of skolemization;

" a treatment of mathematical induction in the deductive-tableau framework.

* A Theory of Plans ([MW3][MW,])

Problems in commonsense and robot planning were approached by methods adapted from our
program-synthesis research; planning is regarded as an application of automated deduction. To
support this approach, we introduced a variant of situational logic, called plan theory, in which
plans are explicit objects. A machine-oriented deductive-tableau inference system is adapted to
plan theory. Equations and equivalences of the theory are built into a unification algorithm for the
system. Frame axioms are built into the resolution rule.

Special attention was paid to the derivation of conditional and recursive plans. Inductive
proofs of theorems for even the simplest planning problems, such as clearing a block, have been
found to require challenging generalizations.

* A Resolution Approach to Temporal Proofs ([AMi])

A novel proof system for temporal logic was developed. The system is based on the classi-
cal non-clausal resolution method, and involves a special treatment of quantifiers and temporal
operators.

Soundness and completeness issues of resolution and other related systems were investigated.
While no effective proof method for temporal logic can be complete, we established that a simple
extension of the resolution system is as powerful as Peano Arithmetic.

We have investigated the use of the system for verifying concurrent programs. We also provided
analogous resolution systems for other useful modal logics, such as certain modal logics of knowledge
and belief.

9 Temporal Logic Programming ([AM2])

Temporal logic is a formalism for reasoning about a changing world. Because the concept of
time is directly built into the formalism. temporal logic has been widely used as a specification
language for programs where the notion of time is central. For the same reason. it is natural
to write such programs directly in temporal logic. We developed a temporal logic programming
language, TEMPLOG, which extends classical logic programming languages, such as PROLOG, to
include programs with temporal constructs. A PROLOG program is a collection of classical Horn
clauses. A TEMPLOG program is a collection of temporal Horn clauses, that is, Horn clauses with
certain temporal operators. An efficient interpreter for PROLOG is based on SLD-resolution. We
base an interpreter for TEMPLOG on a restricted form of our temporal resolution system, temporol
SL D- resolution.

* Verification of Concurrent Programs ([MPI](MP2])

We studied in detail the proof methodologies for verifying temporal properties of concurrent
programs. Corresponding to the main classification of temporal properties into the classes of sftly
dnd li'eness properties, appropriate proof principles were presented for each of the classes.

3



We developed proof principles for the establishment of safety properties. We showed that
essentially there is only one such principle for safety proofs, the invariance principle, which is a
generalization of the method of intermediate assertions. We also indicated special cases under
which these assertions can be found algorithmically.

The proof principle that we developed for liveness properties is based on the notion of well-
founded descent of ranking functions. However, because of the nondeterminancy inherent in concur-
rent computations, the well-founded principle must be modified in a way that is strongly dependent
on tile notion of fairness that is assumed in the computation. Consequently. three versions of the
well-founded principle were presented, each corresponding to a different definition of fairness.

* Specification and Verification by Predicate Automata ([MP3])

We examined the possibility of specifying and verifying temporal properties using an extension
of finite-state automata, called predicate automata. These automata extend the conventional notion
of automata in three respects. The first extension is that the conditions for transitions between
states can be arbitrary predicates expressed in a first-order language. The second extension is that
these automata inspect infinite input sequences, and hence a more complex acceptance criterion
is needed. The third extension is that non-determinism is interpreted universally, rather than
existentially, as is the case in conventional non-deterministic finite-state automata. This means
that if the automata can generate several possible runs, in response to a given input, then it is
required that all runs are accepting.

By introducing conventions for representing automata in a structured form, we demonstrated
that specification of temporal properties by automata can become very legible and understandable,
and presents a viable alternative to their formulation in temporal logic.

A single proof rule was presented for proving that a given program satisfies a property speci-
fiable by a predicate automaton. The rule was shown to be sound and relatively complete.

* A Hierarchy of Temporal Properties ([MP4])

We proposed a classification of temporal properties into a hierarchy which refines the known
.afety-liicness classification of properties. The classification is based on the different ways a prop-
erty of finite computations can be extended into a property of infinite computations.

This hierarchy was studied from three different perspectives, which were shown to agree. Re-
spectively, we examined the cases in which the finitary properties, and the infinitary properties
extending them, are unrestricted, specifable by temporal logic, and specifiable by predicate au-
toniata. The unrestricted view leads also to a topological characterization of the hierarchy as
occupying the lowest two levels in the Borel hierarchy.

For properties that are expressible by temporal logic and predicate automata, we provide
a syntactic characterization of the formulae and automata that s'peify properties of the differ-
ent classes. The temporal logic characterization strongly relies on the use of the past temporal
operators.

Corresponding to each class of properties, we presented a proof principle that is adequate for
proving the validity of properties in that class.

4



0 Logic Programming Semantics: Techniques and Applications ([Bl]-(B3])

It is generally agreed that providing a precise formal semantics for a programming language is
helpful in fully understanding the language. This is especially true in the case of logic-programming-
like languages for which the underlying logic provides a well-defined but insufficient semantic basis.
Indeed, in addition to the usual model-theoretic semantics of the logic, proof-theoretic deduction
plays a crucial role in understanding logic programs. Moreover, for specific implemntatiois of
logic programming. e.g. PROLOG, the notion of deduction stategy is also important.

\We provided semantics for two types of logic programuuing languages and develop applications
of these semantics. First, we propose a semantics of PROLOG programs that we use as the basis of
a proof method for termination properties of Pwo,o( programs. Second, we turn to the temporal
logic programming language TEMPLOG of Abadi and Manna, develop its declarative semantics,
and then use this semantics to prove a completeness result for a fragment of temporal logic and to
studv TEMPLOG's expressiveness.

In our PROLOG semantics, a program is viewed as a function mapping a goal to a finite or
infinite sequence of answer substitutions. The meaning of a program is then given by the least
solution of a system of functional equations associated with the program. These equations are
taken as axioms in a first-order theory in which various program properties, especially termination
or non-termination properties, can be proved. The method extends to PROLOG programs with
extra-logical features such as cut.

For TEMPLOG. we provide two equivalent formulations of the declarative semantics: in terms
of a minimal temporal Herbrand model and in terms of a, least fixpoint. Using the least fixpoint
semantics, we are able to prove that TEMPLOG is a fragment of temporal logic that admits a
complete proof system. This semantics also enables us to study TEMPLOG's expressiveness. For
this, we focus on the propositional fragment of TEMPLOG and prove that the expressiveness of
propositional TEMPLOG queries essentially corresponds to that of finite automata.



REFERENCES

Research papers and Ph.D. theses supported by this contract.

* indicates papers that are attached as part of this report.

*[AM1] A. Abadi and Z. Manna, "'Nonclausal deduction in first-order temporal logic," Journal

of the ACM (to appear 1989).

[AM2] A. Abadi and Z. Manna. -'Temporal logic programming," 4th Symposium oil Logic
Programming, San Francisco, CA, Sept. 1987, pp. 4-16. Also, Journal of Symbolic Com-
putation (to appear 1989).

[B1] M. Baudinet, "Proving Termination Properties of PROLOG Programs: A Semantic Ap-
proach," Proceedings of the Third Annual Symposium on Logic in Computer Science,, pp.

336-347, Edinburgh, Scotland, July 1988.

[B2] M. Baudinet, "Temporal Logic Programming is Complete and Expressive," Proceedings of
the Sixteenth ACM Symposium on Principles of Programming Languages, Austin, Texas,
January 1989.

*[B3] M. Baudinet (supervised by Z. Manna), Logic Programming Semantics: Techniqucs and

Applications, Ph.D. Thesis, Computer Science Dept., Stanford University (1989).

[MP1] Z. Manna and A. Pnueli, The Temporal Logic of Concurrent Programs, textbook (to
appear 1989).

*[MP2] Z. Manna and A. Pnueli. "The Anchored Version of the Temporal Framework," In

Concurrent Programming, Lecture Notes in Computer Science, Springer-Verlag (to appear
1989).

[MP3] Z. Manna and A. Pnueli. "Specification and verification of concurrent programs by
V-automata," In Temporal Logic and Specification (B. Banieqbal and H. Barringer, eds.),
Lecture Notes in Computer Science. Springer-Verlag (to appear 1989).

[MP4] Z. Manna and A. Pnueli, "A hierarchy of temporal properties," Proceedings of the
6th Symposium on Principles of Distributed Computing, Aug. 1987. Also, CS report,
Stanford University, Oct. 1987.

*[MW1] Z. Manna and R. Waldinger. -The origin of the binary-search paradigm," Science of

Computer Programming Journal, Vol. 9, No. 1 (August 1987), pp. 37-83.

[MW2] Z. Manna and R. Waldinger. Logical Basis for Computer Programming, Volume 2:

Deductive Systems, textbook, Addison-Wesley Pub. (to appear 1989).

*[MW3] Z. Manna and R. Waldinger, "tlow to clear a block: A theory of plans," Journal of

Automated Reasoning, Vol. 3, No. 4 (December 1987), pp. 343-377.

[MW4] Z. Manna and R. Waldinger, "The Deductive Synthesis of Imperative LISP Programs,"
6th National Conference on Artificial Intelligence, Seattle, WA, July 1987, Morgan Kauf-

mann, pp. 155-160.

6


